Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes

نویسندگان

  • Dmitry N. Dirin
  • Loredana Protesescu
  • David Trummer
  • Ilia V. Kochetygov
  • Sergii Yakunin
  • Frank Krumeich
  • Nicholas P. Stadie
  • Maksym V. Kovalenko
چکیده

Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as a novel class of bright emitters with pure colors spanning the entire visible spectral range. Contrary to conventional quantum dots, such as CdSe and InP NCs, perovskite NCs feature unusual, defect-tolerant photophysics. Specifically, surface dangling bonds and intrinsic point defects such as vacancies do not form midgap states, known to trap carriers and thereby quench photoluminescence (PL). Accordingly, perovskite NCs need not be electronically surface-passivated (with, for instance, ligands and wider-gap materials) and do not noticeably suffer from photo-oxidation. Novel opportunities for their preparation therefore can be envisaged. Herein, we show that the infiltration of perovskite precursor solutions into the pores of mesoporous silica, followed by drying, leads to the template-assisted formation of perovskite NCs. The most striking outcome of this simple methodology is very bright PL with quantum efficiencies exceeding 50%. This facile strategy can be applied to a large variety of perovskite compounds, hybrid and fully inorganic, with the general formula APbX3, where A is cesium (Cs), methylammonium (MA), or formamidinium (FA), and X is Cl, Br, I or a mixture thereof. The luminescent properties of the resulting templated NCs can be tuned by both quantum size effects as well as composition. Also exhibiting intrinsic haze due to scattering within the composite, such materials may find applications as replacements for conventional phosphors in liquid-crystal television display technologies and in related luminescence down-conversion-based devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II-VI and III-V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessi...

متن کامل

Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals.

A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanoc...

متن کامل

Color-stable water-dispersed cesium lead halide perovskite nanocrystals.

Cesium lead halide perovskite nanocrystals are being lately explored for optoelectronic applications due to their emission tunability, high photoluminescence quantum yields, and narrow emission bands. Nevertheless, their incompatibility with polar solvents and composition homogenization driven by a fast anion-exchange are still important drawbacks to overcome. Herein we report on a successful e...

متن کامل

Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells.

Organic-inorganic lead halide perovskites have been widely used as absorbers on mesoporous TiO2 films as well as thin films in planar heterojunction solar cells, yielding very high photovoltaic conversion efficiencies. Both the addition of chloride and sequential deposition methods were successfully employed to enhance the photovoltaic performance. Here, both approaches are combined in a sequen...

متن کامل

Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016